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On the Poincark problem for a compressible medium 

By ROGER F. GANS 
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(Received 15 June 1973) 

By the ‘ Poinear6 problem ’ is meant the determination of the free oscillations of a 
contained rotating fluid, its velocity being linearized around a state of solid rota- 
tion. Compressibility requires one to introduce a basic thermodynamic profile 
as well as a basic velocity distribution. Here the temperature gradient has been 
supposed proportional to the adiabatic gradient, by introduction of a proportion- 
ality constant a (a  = 0 in the isothermal case; a = 1 in the adiabatic case). 
In  this formulation the system is reducible to a single second-order ordinary 
differential equation and its boundary condition. 

It is proved that if a = 1 the oscillation frequencies in the rotating system 
cannot equal plus or minus twice the rotation frequency. The negative case is 
pathological in the sense that there are solutions arbitrarily near the forbidden 
solution, and a solution curve of frequency as a function of rotation rate crosses 
the forbidden frequency. 

The basic system is expanded in terms of a power series in y - 1, where y is the 
ra.tio of specific heats. The zeroth-order set of equations is solved in terms of con- 
fluent hypergeometric functions, and a solvability condition on the first-order 
set gives frequency shifts as functions of a. Several zeroth-order frequencies have 
been calculated, together with four first-order frequency shifts. 

1. Introduction 
The phase ‘ Poincar6 problem ’ is short for ‘ finding the free modes of oscillation 

of a contained rotating fluid’. When the fluid is incompressible this search leads 
to the Poinear6 equation, hence the name. When the fluid is compressible the 
problem leads to a considerably more complicated equation; approaches to 
solving this equation form the main subject of this paper. 

One would hope that these results would have some astrophysical applica- 
tions, and naturally, they are relevant to high-speed rotating fluid machines. 

Of more basic interest is the question of the distinction between compressible 
and incompressible phenomena. In  the present case one can ask whether ‘acous- 
tic’ and ‘inertial’ waves are distinguishable when the Mach number is greater 
than or of order unity. This bears on the general question of how far one can 
push the Boussinesq equations if one is truly interested in non-acoustic pheno- 
mena a t  finite Mach numbers. I shall show that there is partial separation if the 
basic thermodynamic state is adiabatic. 
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I n  an effort to derive general equations, the basic temperature gradient is 
taken to be proportional to the adiabatic gradient with the proportionality 
constant a parameter of the problem, allowing variation between isothermal and 
adiabatic states. 

The plan of the paper is as follows. I n  8 2 the basic equations are derived in an 
inertial co-ordinate system, independently of the container geometry, and a 
simple demonstration that the eigenvalues are real is given. I n  9 3 the system is 
reduced to a single ordinary differential equation and its associated boundary 
condition for cylindrical geometry. The nature of this equation is explored in 
terms of its singular points, and it is shown to be tractable only if the ratio of the 
specific heats of the gas is unity. This will form the basis for an expansion explored 
in 3 5. First, however, I show in 9 4 that IAl + 2!2 if the basic temperature gradient 
is adiabatic. (A is the dimensional frequency in the rotating co-ordinate system 
and Q the rotation rate.) This is an extension of the well-known situation in the 
incompressible case. The case A = - 2Q proves to be illusory. While A cannot 
equal - 2!2, it can be arbitrarily close, and a curve of A(Q) will cross the A = - 2!2 
line. 

I n  0 5 an expansion procedure in powers of y - I is given, and an expression for 
the O(y - I )  correction to the eigenvalue is obtained. I n  9 6 someactualeigenvalues 
are obtained for the small y - 1 problem and a discussion is given. 

2. Formulation 
I n  deriving the perturbation equations for the usual Poincard problem a 

basic velocity field v = 8 x r is imposed, and the equations of mass and momen- 
tum conservation are linearized about the basic state of solid rotation. I n  the 
compressible case this is inadequate; one basic thermodynamic profile must be 
prescribed as well. I n  this paper the equations will be linearized about a velocity 
distribution v = !2 x r together with a basic temperature distribution To(a). 
Here a is the radial co-ordinate in a (a, $, z )  co-ordinate system with f parallel 
to a. Associated with this temperature distribution will be an entropy distribu- 
tion So(m). It will be convenient to use both temperature and entropy during 
the analysis. The reader is reminded that these cannot be independently specified. 

The basic equations in terms of P, the pressure, p, the density, v, the velocity, T, 
the temperature, and S, the ent.ropy, written in an inertial co-ordinate system, 
are 

(2.1u) 

( 2 . l b )  

pDv/Dt + VP = pv(+VV. v - V x V x v}, 

DplDt +pV.  v = 0, 

DS/Dt = 0, P = P(p,X), (2.1 c, a) 
where pv is the coefficient of viscosity. The conditions under which viscosity may 
be neglected will be discussed below. D/Dt is the usual convective derivative. 

If the basic quantities Po, po, So and To are functions of a only, the second and 
third equations are automatically satisfied and the basic state need only satisfy 
the pair 

(2.2a, b )  
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where So is specified. A prime is used to denote differentiation with respect to w. 
By assuming a perfect gas, the pressure and temperature distributions can be 
related using the supplementary equation of state 

Po = RPOTO, (2.2c) 
where R is the gas constant. 

The entropy and temperature distributions can be related by differentiating 
both equations of state with respect tow and substituting from (2.2 a)  to eliminate 
the pressure. This manipulation produces the pair 

(2.3) 
Q 2 w o  = (ap,/aPo)sP; + (apo/as ) 8' 
Q2wp0 = RTop; + RpoT;. 

O "1 
Since (aPo/apo)s is the adiabatic sound speed, equal to yRT,, where y is the ratio 
of specific heats, and (aPo/N0), can be shown to be equal to ( y  - I)/yp,T, one can 
rewrite this pair as 

and subtract to obtain a relation between Tk and 8;. In  particular, the isothermal 
entropy distribution is given by 

and the isentropic (adiabatic) temperature distribution by 

8; = -YRP;/Po, (2.5) 

(2.6) G/TO = (Y - 1) p;/rOo. 

The temperature distribution can be varied by defining a as the (constant) 
ratio of the actual temperature gradient to the adiabatic temperature gradient. 
After some manipulation i t  can be seen that 

and 

I a(y-1) Q 2 a 2  
T ~ ( w )  = T, + - 21+a(y-I)  R ' 

T, is the temperature at  w = 0. 
The parameter a has been introduced to establish a one-parameter family of 

temperature profiles including the two important special cases, the adiabatic, 
a = 1, and isothermal, a = 0, cases. It will be established below that the system 
is stable for 0 < a < 1. 

The perturbation equations are obtained by the substitutions 

I P = P0+EPl, p =po+.5p1, 

v = V0+€V1, x = S,+€X,, 

and retention of the linear terms. The result is 

Po[(;+Q4) v1+2s2x v1 -p,Q2wt%+V& 1 
= p Y [ ~ v v . v , - v x v x v J ,  (2 .104  
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(2.10 b) 

( ; + Q ~ ) s l + v l . & Y ;  = 0, (2.10c) 

(; + Q4) Pl + v, . &P; = YET,  [ (; + Q4) p1 + v,. a p ;  * I  . (2.10d) 

The term Qa/@ in the various operators arises because the equations have been 
written in an inertial co-ordinate system. 

It is convenient to non-dimensionalize in terms of L, a length scale, M ,  a mass 
scale, and !2 and T, according to the scheme 

(2.11) 1 = ( H / L ~ ) F ,  P = Q ~ ( M / L ) F ,  = a~ii, 
S = yRs, T = T,F, r = LF, t = Q-lf. 

Two dimensionless numbers are introduced by this scaling : 

,u’ = Q2L2/yRT,, E = (PV) L/MQ.  (2.12) 

The former is the square of a Mach number, relating the peripheral velocity to 
the sound speed on the axis (w = 0), and the latter an Ekman number. A t  this 
point it will be supposed that E 1 and the viscous term discarded. This limit 
requires a reduction of the velocity boundary condition from v = 0 to ti. n = 0. 
The equations obtained are 

p O ~ ~ , - m ~ ~ , + v ~ ,  = 0, (2.10 a)’ 

(a,+ a&, + v * (POGl) = 0, (2.10 b)’ 

(a,+ a,) s, + 3,s; = 0, (2.10 c)’ 

(2. loci)’ 

where 9 = a + a, + 22 x , El is the radial component of iil, a prime denotes dif- 
ferentiation with respect to a, and 

(a,+ a,) + E,F; = p-Zc2[(8t + a,) p ,  + u,p;-J, 

(2.13) 

is the square of a dimensionless sound speed. 
Solutions proportional to exp [i(d + mq5 + kx)] will be sought, and the com- 

bination CT + m will be called A. (This represents the time derivative in a rotating 
co-ordinate system and corresponds to the usual h in the Poincar6 problem.) 
Equation ( 2 . 1 0 4 ’  is used to eliminatep, in terms of P,. (The overbars will hence- 
forth be dropped.) Equation (2 .10~) ‘  merely defines S,  and does not affect the 
dynamics. After some manipulation the pair of equations 

i A -  P2 c2 P 1 + p  0 P2 -wu,+pOv.ul c2 = 0 (2.14b) 

isobtained. Theconstant K = [(l-a)(y-l)]/[l+cx(y-l)]. 
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These are the basic equations to be considered below. They are characterized 
by three parameters, the dynamic Mach number, the introduced thermodynamic 
parameter a and y - 1. 

Howard & Siegmann (1969)  have established that the eigenvalues h will be 
real if the temperature gradient nowhere exceeds the adiabatic one, using an 
energy conservation principle. The same result can be obtained directly in this 
case using Greenspan's ( 1  968) technique for the incompressible problem. 

Multiply ( 2 . 1 4 ~ )  by uT and integrate over the volume using the boundary 
condition ul.  n = 0. This produces the equation 

ih(p,u,*.  ul) + 2(p,uT. k x ul) 

- (uf $ Pl) +:pa ( p o $ u f  u l )  - (PIV. u,*) = 0, (2.15) 

where an asterisk denotes a complex conjugate and angular brackets denote the 
integral over the volume. The equation can be simplified by adding 

(Plv.u:)+ P1-muT -ih* -PP,* = o ,  ( 5 ) ($ ) (2.16) 

obtained by multiplying (2.14b)" by Pl and integrating. After transforming the 
Coriolis term (cf. Greenspan 1968, p. 52)  the resulting eigenvalue equation can be 

A2h2+Bh-KC2-D21hI2 = 0, (2.17) 
written as 

where A, B, C and D are real. 
Putting h = a + i b  and taking the imaginary part of (2.17) gives 

b(2aA2+ B)  = 0, (2.18) 

so that either b = 0 or a = - B / 2 A 2 .  If the latter is true then the real part of (2 .17 )  
can be solved for b. This gives 

(A2+D2)b2  = -- B2 (I +$) - KC2, 
4A2  

(2 .19)  

a contradiction unless K is sufficiently negative, but K is positive on the interval 

- (y -  1 ) - 1  < a < 1. (2 .20)  

It is clear from the definition of c2, equation (2 .13 ) ,  that the lower limit cannot be 
reached. The minimum physically meaningful value of a in the range defined 
by (2 .20)  is that for which c2 ( 1 )  vanishes: 

a,,, = - I / ( y  - 1 )  ( 1  + iIU.2).  (2 .21)  

Thus Howard & Siegmann's result is obtained, and the statement above that 
the problem is stable for 0 < a < 1 is confirmed. 

3. Reduction to a single equation 
A single equation can be obtained by solving ( 2 . 1 4 ~ )  for u1 in terms of Pl/p, and 

substituting this into (2 .14b) .  The result is a second-order ordinary differential 
equation for Q = Pl/po and a boundary condition equivalent to u, . n = 0. 
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The components of u1 are given by 

- i  1+k,w2 
u, = - 

4-  A2 1 + k , a 2  
( 3 . 1 ~ )  

W1 = - (k/h) Q. ( 3 . 1 ~ )  

In  these equations ul, v, and w, are the cylindrical components of u, and the con- 
stants 

k I a' Kp2, k, = k l + y K p 2 ;  I 
1 -  2 1 - a  4 - A  

c2 is the dimensionless sound speed, equal to 1 + k,  w2. 
It seems likely that the problem is inseparable in any co-ordinates other than 

cylindrical, so the geometry will be so restricted and the boundary condition for 
(3.3) below will be taken to be ul(l) = 0, where u1 is given by ( 3 . 1 ~ ) .  Potential 
special cases, h = 0, & 2 and 1 + k, or 1 + k, vanishing, will be excluded, and dis- 
cussed a posteriori; only the differential equation obtained by equating the 
curly bracket in (3.3) to zero will be considered, together with the consistent 
boundary condition from (3.1 a) .  

After considerable additional algebra a single equation in Q results: 

_- m2 Q [ p ( l + k z m 2 ) -  
a 2  Q + 1 + k,aZ 

+- A h  ---2 p2K +- [ ( 4 - h z - 2 y )  2k,]]. ) ] l + k , w 2  
(3.3) 

Here 
By examination of (3.1) and (3.3) it  can be seen that the problem is unchanged 

if the pair (m, A )  isreplaced by ( - m, - A). Thus m can be restricted t o  non-negative 
values without loss of generality. 

It can be established that p2 + 0 reproduces correct limiting cases. If p 2  -+ 0 
and h N 1, corresponding to an infinite sound speed, one can set k, = k ,  = 0 
in (3 .1)  and (3.3) and obtain 

= (4 - A2) k 2 / A 2 .  

Q" + m-lQ' + (6, - m2/a2) Q = 0, 

hQ'+2ma-l& = 0 on a = 1, 

the Poinear6 eigenvalue problem in a cylinder. If p2+ 0 and h = v/p, v N 1, cor- 
responding to vanishing rotation, then 6 2  --f - k2 and k ,  and k, are asymptotically 
equal, so that h2(k, - k,) N 0 and one obtains 

Q" + a-lQ' + (v2 - k2 - m2/a2) Q = 0, Q' = 0, 

the usual eigenvalue problem for acoustic modes in a non-rotating cylinder. 
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Restrictions Equation type Comment 

a = o  
a = l  
y = l  [6, 0, 01 -+ [ O ,  1, 11 Confluent hypergeometric 

K2 = 0 Hypergeometric equation 

[ 3  7, 0, 01 -+ LO, 2, 11 
[> 7, 0, 01 -+LO, 2, 11 

Isothermal, too complicated 
Adiabatic, too complicated 

equation 
[6, 0, 01 + [ O ,  3, 01 

TABLE 1 

The nature of the equation is more easily seen in terms of the new variable 
x =  -1 2p2m2. If Q is replaced by amV(x) ,  then, in terms of x and K~ and K ~ ,  defined 

the governing equation for V is 

( l+K1)+ym+- --2 K "(" A h  1 1  
1 v  _ -  
2X( 1 - K 2 X )  

(3.4) 

In  (3.4) it  can be seen that x = 0, K T ~  and  KC^ are regular singular points with 
exponent differences nz, [a(? - 1 ) l - I  and 2 respectively. The point at infinity is 
also singular, and it is irregular unless t 2 ~ 2  = 0. 

Equation (3.4) is in general far too complex to be solved in terms of the usual 
tabulated functions. In  the notation of Ince (1956, chap. 20) the equation is 
derived from a confluence of a t  least nine elementary singularities (two for each 
regular singular point and a t  least three for the irregular singular point). This 
would be symbolized by [9,0,0];  Ince's classification continues only as far as 
[6, 0, 01, containing a generalized Lam6 equation, the hypergeometric and con- 
fluent hypergeometric equations, the Mathieu and associated Mathieu equations 
and the Weber equation. The bracket symbolism [ p ,  q, r]  represents an equation 
by its total number of elementary singularities p ,  regular non-elementary singu- 
larities q and irregular singularities r .  Equation (3.4) would be written as [0,3,1] .  

It should be clear that, in order to calculate eigenvalues or to use known asymp- 
totic results, it will be necessary to reduce (3.4) to an equation derivable from 
[p,O,O] where p < 6. Various possible parameter settings and the resulting 
equations are given in table 1. 

A comment on table I is in order. The species of an irregular singular point is 
equal to the number of elementary singularities it contains minus two. In 
the third line [0,1, I] could be written as [0,1, 12] to indicate an irregular singu- 
larity of species 2. It is possible to determine the species of the irregular singular 
point at  infinity in general. I have not done so since equations containing 
irregular singularities are too complex even if the species is unity. Because of 
this, the 7 indicated for a = 0 , l  is a minimum value; things could be worse. 
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It should be noted that the boundary condition under this co-ordinate trans- 
formation is converted to 

V a t  x = -$p2, (3.5) 

The case K~ = 0 specifies a relation among p, h and u, so that each solution set 
would correspond to a different temperature distribution. Any solutions thus 
obtained could not be correlated unambiguously among themselves; this simpli- 
fication is not useful. 

The case y = 1 is much more attractive. If e is defined as y - 1, then it is easy 
to see that the equation and boundary condition have coefficients which are 
analytic functions of e, so that the solutions are analytic functions of 8 and 
possess Taylor series in e. The y = 1 solution is then just the leading term in the 
relevant Taylor series, and for small e, a physically meaningful situation, 
should be a useful approximation to the correct solution. This approximation 
also has the feature that i t  is independent of a;  a first solution does not depend on 
the exact nature of the temperature profile. 

To find the correction terms, it proves necessary to use a modified regular 
perturbation scheme (in the sense of Millman & Keller 1969) expanding h as 
well as V in powers of B .  The formalism will be developed in $ 5  below. First 
the question of I A I = 2 will be considered. 

4. When can Ihl = 22 

The possibility of I hl = 2 is of greatest interest. These eigenvalues are forbidden 
in the incompressible case, but in the general case typified by (3.1) and (3.3) 
there appears to be no real problem when Ihl = 2,  unless u = I, implying adia- 
baticity of the basic state. (In particular (3.3) takes different forms depending 
on the order in which a: is set equal to unity and I hl to 2 . )  

To investigate the case a = 1 properly it is necessary to return to (2.14) and 
set h = 

Tlie components of ( 2 . 1 4 ~ ~ )  are (dropping the subscript one): 
2, a: = 1 and treat p2 as an eigenvalue. 

(4.1) I f. 2i(p0u)  - 2(p0v)  - wp2c-2P + P' = 0, 

2 ( p 0 u )  f 2i(p0v)  +imw-lP = 0, 

i- 2i(p,w) +iEP = 0. 

Viewed as an algebraic set for p0u these are singular unless 

- 

from which 

The upper sign ( A  = + 2 )  implies that the proportionality constant must equal 
zero, and hence that w = 0. The redundant pair requires that v = iu, and the 
continuity equation reduces to 

a ( p o u p )  am = 0, (4.4) 
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the solution to which is u Cc 'Cif"lp0, (4 .5)  

which cannot satisfy the boundary condition u( 1) = 0; po is inherently positive. 
This proves that A = + 2 is forbidden; the discussion now turns to the investiga- 
tion of A = - 2 .  

One can again form a single equation for u: 

au am -+ ["z" -+- c2 m ; ~ ]  u = -- ;r - 3 + k 2 - 4 -  p21 C2 (PIP,). 

The homogeneous solution is ucc W - ( ~ + ~ ) C - ~ / ( Y - ~ ) ,  which is unbounded a t  the origin 
and must be discarded. From (2.4), it  can be seen that pox (c2)l/(~--l), so P/pocc wm, 
and the equation for u is 

( 4 . 7 )  

The right-hand side can be integrated by parts. After some algebra the particular 
solution can be written as 

m 

n=O 
u = Vm) (-1)~[[Bm2p2(y-l)q(q+n+i)-k2c2+4p2m(q+n+1)] 

2 (4 .8 )  
( m - l ) ( m - 2 )  ...( m - n + l )  m-2n--1 

X (HW) q(q+ 1) ... (q+n+ 1 )  

where U(m) and Il are constants and q = ( y -  1)-1. This is unbounded a t  m = 0. 
Thus i t  has been established that (A1 = 2 is forbidden in a cylinder if the basic 
temperature distribution is adiabatic. 

There is one exception to the above. It can be verified that the parameters 

m = 0 ,  p=Qlc, y = l ,  A = - 2  

result in a family of acoustic modes characterized by 

This is the simple organ-pipe mode of the original non-rotating system. Note 
that the phase speed Alk = - 1/p7 which can be dimensionaljzed to give 

The organ-pipe mode is unaffected by rotation if y = 1 .  
The proof that A =k - 2 as given fails when y = 1 and since this case will be used 

below as the leading term of an expansion, i t  is necessary to establish the proof 
separately. 

In  this case it happens that pooc exp (frp2w2), and the expression corresponding 
to (4.7)is 

(4 .9)  
Integrating this expression and simplifying one finds 

u = iv = 0, w = ilc, P = Po. 

c3, = (yRTJ4. 

a[mm+1exp(~p2w2)u]/am = giw2m+lexp (frp2w2) [4p2-k2-m2/m2].  

wm-l wm-3 
ucc (4p2-lc2)- -- [p2m2 + 2( 4p2 - k2) ]  

4 ( m - l ) ( m - 2 )  ...). (4.10) + 
P2 P2 

p2W2 

If p2 =+ 2k2/ (8  +m2) the series term is unbounded. 
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If p2 = 2k2/(8 +m2) ,  u has a single term, viz. 

uz -$mZam-l, (4.11) 

which does not vanish a t  a = 1. Thus, the statement h + - 2 holds for y = 1 as 
well. 

A mathematical proof, which says that h cannot equal ? 2, is not the same as a 
physical proof. Physics demands that one establish that h cannot be near ~f: 2 ,  
and it will become clear from the numerical results in 3 5 that h can be arbitrarily 
near - 2 for finitep. The mathematics behind this is easily established from (3.3). 

If h = rt 2 and a = 1, equation (3.3) reduces to 

[ +mp2 mz] Q = 0, Q’+ 
i + k , a Z  a 2  

(4.12) 

omitting the (infinite) factor outside the curly brackets. If the lower sign is chosen, 
(4.12) admits the solution Q = am, for which, referring to (3.la), u = 0 (again 
omitting the factor (4 - h2)-l). 

If ZL E 0, it follows from (2.14) that in fact Q must be identically zero, meaning 
that the mode has no pressure or velocity associated with it. However, there will 
be modes arbitrarily close to this which do have pressure and velocity fields 
associated with them; an eigenvalue curve in A, p space can cross A = - 2. 

5. A perturbation scheme for y -  1 < 1 

Let 

I v = v ,+eq+ ... , 
h = h,+Ehl+ ... . 

The pair (6, A,) is obtained by solving the y = 1 equations, which are, from (3.4) 
and(3.6), 

xVb+(m+I-x) VA-a,,V, = 0, ( 5 . 2 ~ )  

(5 .2b )  

The solution t.0 (5.2a) which is bounded a t  the origin is 

v, = @(a, ,m+l;x) ,  

where 

and the notation is that of Erddyi et al. (1953). The eigenvalue relation becomes 

(In (5.3) the zero subscripts have been suppressed in the interest of clean equa- 
tions. This practice will be continued below unless there is distinct danger of 
ambiguity.) 
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It should be remarked in passing that the limiting forms of (5.3) as p2 + 0 

(5.4) 

( 5 . 5 )  

Ifp2 -+ 0 and h = VIP,  where u N 1, the same limiting process yields the asymp- 

reproduce the appropriate incompressible formulae. Ifp2 -+ 0 and h N 1, then 

@(a, m + 1, - 4p2) N m! (tp2/&-?-+ J,(c) 

( A  + 2 )  mJ,([) - h$J,+,(,$) = 0. and (5.3) reduces to 

totic eigenvalue equation 
J&((u2- P)*) = 0, (5.6) 

which is the correct non-rotating acoustic limit. 
Large p2 asymptotics are somewhat more complicated. If p2 3 00 while h 

behaves in such a way that a remains bounded, the asymptotic representation 

can be used to reduce the eigenvalue equation (5.3) to 4 - h2 = 0. Thus, h = rt 2 
provide limiting values of h as p2+m. (The value - 2 is suspect, and in fact is 
probably not a limiting value.) I t  should be noted that h must  be bounded away  f r o m  
zero in order to keep aJinite; the question of h = 0 being an asymptote is  not answered. 

The O(y - 1 )  differential equation obtained by differentiating (3.4) with re- 
spect to e and setting c = 0 can be written as 

where I have suppressed the zero subscript on A. The boundary condition, from 
(3.6),  is 

( A  + 2 )  mV,- hp2V7; = (p2 Vh-mV,) A,- (1 -a) hp2& 

= 2 m k 1 q  A, - (1 - a )  hp2V,. ( 5 . 8 )  

The condition that the pair (5.7) and (5.8) can be solved determines A,. Un- 
fortunately the standard theorems I have been able to  find on the subject do not 
apply directly, because the operator in (5.7) is singular. The usual technique of 
multiplying by the solution to the adjoint problem and integrating over the 
interval does work but it is necessary to establish this. 

Consider the model problem 

XU” + (p - x) u’ - au = go@) + h,g,(z), (5.9) 

(5.10) 

subject to the boundary condition 
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and seek a solution of the form 
W 

U ( X )  = 2 A n F .  
n=O 

If the functions go(x) and g,(x) possess power series expansions 

(5.11) 

(5.12) 

(5.13) 

where uo and u1 depend on go and g,, respectively. Since O(u,p; x) is proportional 
to the zeroth-order solution, it does not contribute to the boundary condition 
and A, may be set equal to zero. Since uo(0) = 0 = u,(O), the particular solution 
may be chosen to be zero a t  x = 0; this is the crucial point for which the above 
discussion was conducted. The proper choice of A, now allows one to satisfy 
the boundary condition (5.10). 

The following procedure produces a formula for A,. Multiply (5.9) by a function 
v and integrate between zero and xo to produce the equation 

The right-hand side may be rearranged to  give 

vg(x)dx, (5.15) 

so that if v is a solution of the adjoint problem 

Q v )  = (xv)” - [ (m + 1 -x)v]’-uv = 0, 

Ef(P - xo - 1) - xol v@o) -foxoz.“(xo) = 0, 

( 5 . 1 6 ~ )  

(5.16b) 

then (5.15) can be used to determine A,. After some manipulation 

( ~ v ( ~ ~ ) - ~ ~ g , ( x ) v ( x ) d x  (5.17) 

To find v, expand ( 5 . 1 6 ~ ) :  

22)” - (m - 1 - x) v’ - (a  - 1)  2, = 0, 

which has the solution (ErdBlyi et al. 1953) 

(-x)me-z@(a,rn+ l ; x ) ,  

hich satisfies (5.16b). This allows a formal solution for A,. 
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6. Discussion and some eigenvalues 
The expansion procedure in $ 5  is a step leading to approximate curves of 

h ws. p. In  particular the behaviour of the zeroth-order (y  = 1) eigenvalues is 
likely to be typical of that of the eigenvalues for small y- 1, and the distinction 
between the adiabatic and isothermal cases is not likely to be crucial in under- 
standing the general behaviour of the various modes with changing Mach num- 
ber. This is based on the analyticity of the coefficients of (3.3) as a function of 
y -  1.  

Even the simple relation (5 .2)  in general defeats exact analysis. However, 
for special values of a,, the confluent hypergeometric series can be written in 
terms of elementary functions. In  particular, if a, = - n, a negative integer, the 
series terminates. If Kummer’s transformation (ErdBlyi et al. 1953) 

(6.1) 

is applied these functions will reduce to exponential functions times poly- 
nomials if a, = c+n, with n a positive integer. For integer values of a, not 
covered by these cases the solution can sometimes be simplified by inspection of 
the series 

@(a,, c ;  x) = e”@(c - a,, c ;  -2) 

@(ao, c ;  2) = 1 + a0 -x + ao(ao+1)_122+***, 
c c ( c + l )  2! 

(The subscript on a, serves no further useful purpose and will be dropped.) 
I have obtained a number of eigenvalues, which are listed in the appendix. 

Some have been obtained algebraically and some by iteration. There is a dis- 
cussion of this in the appendix. It is only necessary here to note that the result 
of solving the eigenvalue relation (5.2) under the requirement that a have a fixed 
value produces an eigenvalue pair, a value of h and of p satisfying both con- 
ditions. Thus, a set of isolated points in a A, p space is created, and the question 
arises of how to draw curves through these points and how to connect them to 
the known asymptotic values. 

Every eigenfunction is characterized by three wavenumbers. Two are the 
parameters rn and k in the 9 and z directions, and the third will be denoted by s, 
defined as one more than the number of nodes in the radial velocity ws. radius 
profile. Thus, ‘s = 1 ’ is the ‘gravest’ mode in the radial direction. Alternative 
definitions of the radial wavenumber are possible, but this seems quite simple 
andnatural. 

A t  zero Mach number there are four eigenmodes corresponding to each set 
(8, m, k): positive and negative ( A )  acoustic and inertial. These are divided from 
each other by the theoretical barriers at h = 2 and h = 0. The barrier a t  - 2, 
however, proves to be illusory, as indicated by the discussion at  the end of $4. 

For positive h the points can be connected quite simply. All those with h > 2 
belong to the acoustic track, and those with h < 2 belong to  the inertial track. 
This arrangement of eigenvalue pairs reveals an additional feature that can be 
used to sort out the negative eigenvalues: the parameter a decreases mono- 
tonically away from + 00 as the Mach number increases away from zero. 
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The largest number of eigenvalues has been calculated for (8, m, k) = (1, 1, &7), 

and these are plottedinfigures 1 (a)  and (b) .  The first figuregives h = h(p)  and the 
second v = v(,u). The frequency v = ,uh is that which produces finite frequencies 
in the limit ,u -+ 0; i t  is the frequency that would have appeared had the sound 
speed been used as a dimensional base. 

Both figures give the same general impression. There is a clear separation be- 
tween inertial and acoustic modes in the positive-h half of the 6gure and an 
apparent convergence in the negative half of the figure. The numbers on each 
curve represent the value of a a t  the point shown. Except for the curve crossing 
h = - 2 ,  there is a minimum permissible value of a. This can be shown by demon- 
strating impossible values of a on the track in question. 

If a = 1 the eigenvalue relation reduces to 

(6.3) 

The right-hand side has its maximum value a t  ,u = 1.785, and the value is 
- 0.3524, requiring h to be negative. Thus, the minimum value for a on the two 
positive tracks is greater than unity, if one accepts the indicated monotonic 
behaviour of a as ,u increases. 

I offer the conjecture that a -+ 1 as ,u + 00 in both cases, with h + + 2 in the 
acoustic and h -+ 0 in the inertial case. 

If a = 2 the eigenvalue relation reduces to 

,u2 = ( 2  + h)/h,  (6.4) 
requiring that h be positive, or less than - 2. Thus, a cannot equal 2 on the nega- 
tive inertial track. It can be conjectured that h -+ 0 as ,u + co in such a way that 
a + 2 on this track. 

There appears to be no limit on a on the negative acoustic track. The value 
u = 0 a t  h = - 2 is special; there the mode must have zero amplitude. On this 
track, I suspect that a + - co as h -+ 0 and p + 00. 

In  view of the clear separation between inertial and acoustic modes, W. V. R. 
Malkus (personal communication) has brought up the question of internal waves, 
corresponding to an incompressible, stratified and ‘non-rotating ’ basic state, 
where rotation would enter only to provide a ‘gravitation-like ’ restoring force, 
without any Coriolis effect. A full discussion of this point is beyond the scope of 
the paper; I offer some thoughts on the problem in the interest of stimulation. 

First it is clear that such waves cannot be discovered using the expansion 
scheme in Q 5. Since the Brunt frequency is proportional to ( y  - 1)*, all the zeroth- 
order modes would have zero frequency. However, h = 0 is not a solution to the 
zeroth-order problem, so that the modified perturbation scheme outlined cannot 
ever uncover these modes. 

A more serious question is whether such modes can be distinguished from the 
inertial modes: whether they have an independent existence. One could answer 
yes to this question if it  were possible to construct a limiting scheme which 
exposed this separate limit. One is in doubt because everything in the problem 
appears to depend on either rotation or compressibility. There is neither an in- 
dependent ‘gravity ’ nor an independent stratification. 



672 R. P. Gans 

Since the Brunt frequency is proportional to  (y  - l)), one possible limit is 
y + co. If y + co with A N 1, equation (3.3) is transformed into a Bessel equation 
of order m in [w; the Poinear6 problem has reappeared. If y-+w with h = vy*, 
things are more delicate. After some manipulation, i t  can be seen that the result 
reproduces the acoustic problem. These arguments fail if 01 = 0. I n  this case, the 
mathematical expression is singular. The difficulty arises from the facts that  
k, = 0 and everything else depends on yp2 = M2,  which is independent of y. 
The meaning of all this is unclear and will not be discussed further. 

From this brief discussion, I offer the conjecture that there are no distinct 
internal wavesin the sense of this discussion. 

So that this paper does not dwindle off in a welter of conjecture, I shall sum- 
marize briefly the main results. 

The problem of the free oscillations of a compressible fluid in uniform rotation 
with a quadratic radial temperature profile has been reduced to a single second- 
order ordinary differential equation and its associated boundary condition: 
equations (3.4) and (3.6). The problem has been solved in terms of Taylor series 
expansions of eigenfunctions and eigenvalues in powers of y - 1. The legitimacy 
of this process is assured by the analyticity of (3.4) and (3.6) as functions of y - 1. 
The lowest order eigenfunctions and eigenvalues are independent of the tem- 
perature profile, and for small y - 1, should be typical of the actual eigenvalues. 

Several lowest order eigenvalue pairs have been found and are listed in the 
appendix. One set has been plotted graphically over Mach numbers between 
zero and about three, which spans most of the practical range now available. 
(The p + 00 limits have of necessity been left to conjecture.) The plot can be 
resolved into four separate tracks which can be unambiguously identified with 
known zero-Mach-number (Boussinesq) solutions. Limitations of space alone 
prevent the presentation of several other such curves. 

The computations were supported in part by Project MAC, an M.I.T. 
interdepartmental laboratory sponsored by the Advanced Research Projects 
Agency, Department of Defense, under Office of Naval Research Contract 
N00014-70-A-0362-0001, and in part by the Department of Mathematics, M.I.T., 
under National Science Foundation Grant GP 22796. I am grateful to R. Fateman 
for showing me how to use his computer, and to J. Klincewicz for calculating some 
of the p = 0 inertial eigenvalues. 

Appendix. Tabulated eigenvalues 
The eigenvalue pairs given below have been calculated in a number of ways. 

The p = 0 acoustic modes were calculated directly using the relevant Bessel- 
function zeros. Some p = 0 inertial modes were calculated numerically by 
J. Klincewicz; others were done graphically by me. The number of significant 
figures indicates the difference. 

Most of the eigenvalue pairs were calculated using the MACSYMA system of 
symbolic manipulation (Bogen 1973), which actually solved the equations and 
found roots using rational arithmetic accurate to a tolerance of lo+'. I found a 
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lu 
0 
1.414 
1-636 
2.0389029 
0 
1.208 
1.390 
1.7038415 
2.7 150200 
0 
0.4874228 
0.5362710 
0.605 
0.899062 
1.3007228 
2.051 5594 
0 
1.0068501 
1.3424202 

0 
2.2485099 
0 
1.31904205 
1.8850667 
0 
0.5824680 
0.6407208 
0.76869 

1.909805 
3.6342636 
5.47737 
0 
0.9921496 
1.3290610 

0 
2,4276901 
0 
1.09164452 
1.4269889 
0 
0.7216902 
0-8830585 
1.25585 

11.650801 
19.550793 
27.463433 
0 
0.8669358 
1.1312060 

A 

-0.1510 
- 0.0683 
- 0-0563 
- 0.0401947 
0.1 7806 
0.2402 
0.2549 
0.2779246 
0.3139060 
- 

- 3.1437981 
- 2.8073587 
- 2.43 
- 1.4967657 
- 0.9507138 
- 0'5572371 

- 
2.89 1 196 
2.4934796 

- 0.6276 
- 0.3622256 

0.99552 
0.8773875 
0.7832459 
- 

- 3.9073834 
- 3.3928387 
- 2.7813 

- 1.023601 
- 0.5204293 
- 0.342487 

- 
3.1387363 
2.6095927 

- 1.675 
- 1.5027396 

1.99 
1.9223866 
1.929948 
- 

- 11.125969 
- 9.0823324 
- 6'36933 
- 0.679636 
- 0.4049817 
- 0.28829436 

- 
9.3322093 
7.1523843 

TABLE 2 (continued overleaf ). 

V 

- 
- 0.09658 
- 0.09211 
- 0.08195309 

- 
0.2902 
0.3543 
0.4735395 
0.8522611 
1.86779 

- 1.5323583 
- 1.5055051 
- 1.47 
- 1.3456852 
- 1.2366151 
- 1.1432050 

1.86779 
2.9110009 
3.3472974 

- 
- 
- 
- 
- 

- 2.42020 
- 2.1977789 
- 2.1738623 
- 2.1379 

- 1.954878 
- 1-8913772 
- 1.87592902 

2.42020 
3.1 140961 
3.4683079 

- 
- 
- 
- 
- 

- 8.06691 
- 8.0295033 
- 8.0202308 
- 7.9990 
- 7.918304 
- 7.9177131 
- 7.91155295 

8.06691 
8.0904262 
8.0908200 

F L M  62 
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Y 
0 
2.5704542 
0 
1.9602584 
2.7 143002 
0 
0.8175386 
0.896 1631 
1.880769 
2.6877844 
0 
1.4741483 
1.881591 1 

0 
4.2512469 
0 
3.7939218 
4.4823225 
0 
1.9696994 
2.0615202 
4.7584 
5-41 65 145 
0 
3.1 851 802 
3.6655406 

h 

- 0.52569 
- 0.2331754 

0.66724 
0.7400896 
0.7452362 
- 

- 3.700578 
- 3.3419898 
- 1.458906 
- 0.9912350 

- 
3.056201 
2.5967535 

- 0.251 
- 0.0330306 

0.19732 
1.1 126944 
1-3232748 
- 

- 4.481057 
- 4.2665137 
- 1.7555 
- 1.5358847 

- 
3.3799857 
2.9432388 

Y 

- 
- 
- 
- 
- 

- 3.43449 
- 3.0253650 
- 2.9949679 
- 2.743865 
- 2.6592697 

3.43449 
4.5052936 
4.8860254 

- 
- 
- 
- 
- 

- 9.77446 
- 8.8263354 
- 8'7955042 
- 8.3510 
- 8.3191417 

9.77446 
10.7658637 
10.788561 

TABLE 2. Some eigenvalues 

few additional roots by hand calculation, accurate to three or four significant 
figures. 

First-order corrections were calculated for four eigenvalues : 

h = - 3.3928387 + [9.945841 x 10-3a - 0.84322789 (1 -a)] (7 - 1 )  + . . . , 
p = 0.6407208; 

h = -1*07236011+[0*37499931~+0~27156155(1-~) ] (~-  1 ) +  ..., 
p = 1.9098039; 

h = 0.78324594 - [0*3907219a + 0*06741905( 1 -a)] (7 - 1) + . . ., 
p = 1.8850687; 

h = 2'6095927 - [0*5506557a - 1*49747536( 1 -a)]  ( y  - 1) + . . . , 
p = 1.3290610. 

The eigenvalue pairs of each set ( s ,  m, k) in table 2 are arranged in groups: 
negative inertial, positive inertial, negative acoustic, positive acoustic. Within 
eachgroup the pairs are arranged in order of decreasing a. For (s, m, k )  = ( I, 1 , An-) 
both h and v = p h  are given for all the eigenvalues, because they have been used 
to draw the figures. For other (s ,  m, k )  the v values of inertial modes have been 
omitted as not meaningful. 



Ow, the Poincccrk problem for a compress~b~e ntedium 675 

REFERENCES 

BOCEN, R. 1973 The M A C S Y M A  Manual. Project MAC, Massachusetts Institute of 

ERD~LYI, A., MAGNUS, W., OBERHETTINGER, F. & TRICOMI, F. G. 1953 Higher Trans- 

GREENSPAN, H. P. 1968 The Theory of Rotating FZuids. Cambridge University Press. 
HOWARD, L. N. & SIEGMANN, W. L. 1969 Studies in Appl. Math. 48, 153-169. 
INCE, E. L. 1956 Ordinary Differential Equations. Dover. 
MILLMAN, M. H. & KELLER, J. B. 1969 J .  Math. Phys. 10, 242-261. 

Technology. 

cendental Functions, vol. 1, chap. 6. McGraw-Hill. 

43-2 


